SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY:PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

MODEL QUESTION BANK (DESCRIPTIVE)

Subject with Code :NUMERICAL METHODS, PROBABILITY & STATISTICS (20HS0833) Year & Sem:II-II

Course & Branch: B.Tech-CE,AGE

Regulation: R20

UNIT –I

NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL **EQUATIONS& INTERPOLATION**

1	Find a positive root of the equation $x^3 - x - 1 = 0$ Using Bisection met	hod.	[L3][CO1]	[12M]
2	Find real root of the equation $3x = e^x$ Using Bisection method.	[L3][CO1]	[12M]	
3	Find out the square root of 25 given $x_0 = 2.0$, $x_1 = 7.0$ Using Bise	[L3][CO1]	[12M]	
4	Find a real root of the equation $xe^x - \cos x = 0$ Using Newton – Rap	[L3][CO1]	[12M]	
5	Using Newton-Raphson method (i) Find square root of 28 (ii) Find cube root of 15.		[L3][CO1]	[12M]
6	Find a real root of the equation $x \sin x + \cos x = 0$ Using Newton – Ramethod.	aphson	[L3][CO1]	[12M]
7	Find out the root of the equation $x \log_{10}(x) = 1.2$ using False position r	[L3][CO1]	[12M]	
8	Find the root of the equation $xe^{x} = 2$ using Regula-falsi method.		[L3][CO1]	[12M]
9	From the following table values of x and $y=tan x$. Interpolate the values when $x=0.12$ and $x=0.28$.	[L5][CO1]	[12M]	
	x 0.10 0.15 0.20 0.25 0.30 y 0.1003 0.1511 0.2027 0.2553 0.309			
	a) Using Newton's forward interpolation formula and the given tab	e ofvalues		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		[L3][CO1]	[6M]
10]		
	b)Use Newton's backward interpolation formula to find $f(32)$ given $f(30)=0.3027$, $f(35)=0.3386$, $f(40)=0.3794$.	(25)=0.2707,	[L3][CO1]	[6M]

UNIT –II

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS& NUMERICAL INTEGRATION

1	Tabulate y(0.1), y(0.2) and y(0.3) using Taylor's series method given that $y^1 = y^2 + x$ and $y(0) = 1$	[L1][CO2]	[12M]
2	Solve $y^1 = x + y$ given $y(1) = 0$, find $y(1.1), y(1.2), y(1.3)$ by Taylor's series method.	[L3][CO2]	[12M]
	Using Taylor's series method, find an approximate value of $y at x = 0.2$ for the differential Equation $y^1 - 2y = 3e^x$, $y(0) = 0$ compare the numerical solution		
3	obtained with exact solution. $y' = 2y = 3e'$, $y(0) = 0'$ compare the numerical solution	[L3][CO2]	[12M]
4	Evaluate by Taylor's series method, find an approximate value of $y \ at \ x = 0.1 \ and \ x = 0.2 \ for \ the \ D. \ E \ y^{II} - x(y^I)^2 + y^2 = 0;$ $y(0) = 1, y^1(0) = 0.$	[L5][CO2]	[12M]
5	Using modified Euler's method find $y(0.2)$ and $y(0.4)$, given $y^1 = y + e^x$, $y(0) = 0$	[L3][CO2]	[12M]
	a)Solve by Euler's method $y^1 = y^2 + x$ $y(0) = 1$ and find $y(0.1)$ and $y(0.2)$	[L3][CO2]	[6M]
6	b) Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2)	[L3][CO2]	[6M]
7	Using R-K method of 4 th order, solve $\frac{dy}{dx} = x^2 - y$, y(0)=1. Find y(0.1) and y(0.2)	[L3][CO2]	[12M]
8	Using R-K method of 4 th order find y(0.1) and y(0.2) given that $\frac{dy}{dx} = x + y, y(0) = 1.$	[L3][CO2]	[12M]
9	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule. (ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.	[L5][CO2]	[12M]
	a) Compute $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{3}{8}$ rule with 12 sub divisions.	[L5][CO2]	[6M]
10	b) Compute $\int_0^{\pi/2} sinx dx$ using Trapezoidal rule, Simpson's $\frac{1}{3}$ rule and compare with exact value.	[L5][CO2]	[6M]

UNIT –III BASIC STATISTICS & BASIC PROBABILITY

	a) i) The weights of 6 comp	petitors in a g	ame are g	iven belo	W				
	58,62,56,63,55,61 kgs. Fi ii) Find the median of the fol	[L3][CO3]	[6M]						
1	b) Find arithmetic mean to th								
1	Marks 10-20			40-50	50-60	[L3][CO3]	[6M]		
	frequency 5			+0-30 22	10	[10][000]			
	1 7								
	a) Find the median to the foll Class intervals 40-		60-70	70-80	80-90	[L3][CO3]	[6M]		
	frequency 5	12	23	8	2				
2		e following (lata						
	b) I find arithmetic mean to th	b) Find arithmetic mean to the following data							
	$\begin{array}{c cccc} x & 1 & 2 \\ \hline f & 5 & 9 \end{array}$	3		5		[L3][CO3]	[6M]		
	<u>f</u> 5 8	10	12 0	5					
	a) Find mode to the following	-							
		$\frac{0-15}{10} \frac{15-2}{18}$	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	5 <u>25-3</u> 12	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[L3][CO3]	[6M]		
3			20	12	0 2				
3	b) Find the median to the foll	owing data.							
	x 5 8	11 14		20	23	[L3][CO3]	[6M]		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12 20	-	6	3				
	a) Calculate the first four cent β_1 and β_2	ral moments	s of the fol	lowing d	istribution also find				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	[L3][CO3]	[6M]					
4	F 1 8 28	56 70	56 28		1				
	b) The first four moments of					[L3][CO3]	[6M]		
	2, 20, 40 and 50. Calculate		-						
	Calculate Karl Pearson and Bo		[10]						
5	X 0-10 10-20 20-30 30- F 2 6 11 20		80 80-90 90-100 18 8	[L3][CO3]	[12M]				
	Calculate the first four centra	L 1	1	5 25 ving data					
	Sheppard's correction, β_1								
6)-20 20-30	30-40	40-50	50-60 60-70	[L3][CO3]	[12M]		
	frequency 2 8								
	a) Three students A,B,C are i	-			•				
	of winning and each is twi	e Probability that B	[L3][CO4]	[6M]					
7	or C wins. b) Determine (i) $P(B/)$ (ii)			0.0110-1-					
	b) Determine (i) $P\begin{pmatrix} B \\ A \end{pmatrix}$ (ii)	with							
	$P(A) = \frac{1}{3} P(B) = \frac{1}{4},$	[L3][CO4]	[6M]						
	a)In a certain town 40% have l								
8	i) If he has brown hair, what is		[L3][CO4]	[6M]					
	ii) If he has brown eyes, deterr		[011]						
	brown hair?								

	b) The probability that students A, B, C, solve the problem are $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively If all of them try to solve the problem, what is the probability that the problem is solved.	[L3][CO4]	[6M]
9	Two dice are thrown. Let A be the event that the sum of the point on the faces is 9. Let B be the event that at least one number is 6. Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$ (v) $P(A \cap B^c)$	[L3][CO4]	[12M]
10	 In a certain college 25% of boys and 10% of girls are studying mathematics. Thegirls Constitute 60% of the student body. (a) What is the probability thatmathematics is being studied? (b) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl? (c) a boy? 	[L3][CO4]	[12M]

UNIT –IV RANDOM VARIABLES

		I	1
1	Two dice are thrown. Let X assign to each point (a, b) in S the maximum of its numbers i.e, X (a, b) = max (a, b). Find the probability distribution. X is a random variable with $X(s)=\{1,2,3,4,5,6\}$. Also find the mean and variance of the distribution	[L3][CO5]	[12M]
	A random variable X has the following probability function		
	X 0 1 2 3 4 5 6 7	[L3][CO5]	[12M]
2	$P(x) 0 K 2K 2K 3K K^2 2K^2 7K^2 + K$		
	Determine (i) K (ii) Mean iii) variance. (iv) if $P(X \le K) > 1/2$, find the Minimum value of K		
	a) Find the mean and variance of the uniform probability distribution		
	given by $f(x) = \frac{1}{n}$ for $x = 1, 2,, n$.	[L3][CO5]	[6M]
3	b) A random variable x has the following probability distribution		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	P(x) k 3k 5k 7k 9k 11k	[L3][CO5]	[6M]
	Find i) k ii) Mean		
	A random variable x has the following probability distribution function		
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[L3][CO5]	[12M]
	Find i) k ii) Mean iii) Variance.		
	A random variable x has the following probability distribution function		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[L3][CO5]	[12M]
	Find i) k ii) $P(X \le 2)$ iii) $P(2 \le x \le 5)$.		
	a) Probability density function $f(x) = \int k(3x^2 - 1), in - 1 \le x \le 2$		
6	a) Probability density function $f(x) = \begin{cases} k(3x^2 - 1), in - 1 \le x \le 2\\ 0, elsewhere \end{cases}$.	[L3][CO5]	[6M]
	(i)Find the value of k. (ii)Find the probability $(-1 \le x \le 0)$		
	b) If a random variable has a Probability density $f(x)$ as $f(x) = \begin{cases} 2e^{-2x}, \text{ for } x > 0\\ 0, \text{ for } x \le 0 \end{cases}$		
	$\int (x)^{-1} \left[0, \text{ for } x \le 0 \right]$	[L3][CO5]	[6M]
	Find the Probabilities thatit will take on a value (i) Between 1 & 3 (ii)		[014]
	Greater than 0.5		
7	For the continuous probability function $f(x) = \begin{cases} kx^2e^{-x} & when \ x \ge 0\\ 0 & elsewhere \end{cases}$	[L3][CO5]	[12M]
	Find i) k ii) Mean iii) Variance.		[14191]
	A continuous random variable x has the probability density function is given by		
0	$f(x) = \begin{cases} Cx(2-x) & \text{if } 0 \le x \le 2\\ 0 & \text{: otherwise} \end{cases}$		[10]
8	$f(x) = \begin{cases} 0 & : otherwise \end{cases}$	[L3][CO5]	[12M]
	Where C is a constant, Find C, Mean and Variance.		
	Suppose a continuous random variable X has the probability density function		
9	$f(x) = \begin{cases} k(1-x^2) \text{ when } 0 < x < 1\\ 0 \text{ ; elsewhere} \end{cases}$	[L3][CO5]	[12M]
	Find i) k ii) Mean iii) Variance.		

	Probability density function of a random variable X is $f(x) = \begin{cases} \frac{1}{2} \sin x, & \text{for } 0 \le x \le \pi \\ 0, & \text{elsewhere} \end{cases}$	[1,2][CO5]	[12]	
10	Find the mean, mode and median of the distribution and also find the probability between 0 and $\frac{\pi}{2}$.	[L3][CO5]	[12]	

UNIT –V PROBABILITY DISTRIBUTIONS AND CORRELATION

	a) Derive me	an and	varian	ce of B	inomia	l distrib	ution				[L4][CO5]	[6M]
1	b) 20% of items produced from a factory are defective. Find the probability that in								[OIAT]			
	a sample of 5 chosen at random (i) one is defective (ii) $P(1 < X < 4)$									[L3][CO5]	[6M]	
	Fit a Binomial distribution to the following frequency distribution:											
2		x	0	1	2	3	4	5			[L6][CO5]	[12M]
		f	2	14	20	34	22	8				
	Out of 800 families with 5 children each, how many would you expect to have											
3	(i) 3 boys (ii) 5 girls (iii) either 2 or 3boys iv) At least one boy								[L2][CO5]	[12M]		
	a) If 2% of li	ght bul	bs are	defecti	ve. Find	the pr	obabil	ity tha	t			
	(i) At least or	ne is de	fective	e (ii) P	(1 < X)	< 8)in	a sam	ple of	100.		[L3][CO5]	[6M]
4	b) If for a Po	isson v	ariate	2P(X =	= 0) =	P(X =	2) Fi	nd the	probabil	ity that		
	i) $P(X \leq$	3) ii)	<i>P</i> (2 <	$X \leq 5$)						[L3][CO5]	[6M]
	Fit a Poisson	distrib	ution t	to the fo	ollowing	g data						
5		x	0	1	2	3	4	5	Total		[L5][CO5]	[12M]
3		f	142	156	69	27	5	1	400			
	In a sample of								standard	l	[L2][CO5]	[12M]
6	deviation is 2		-					al find				
Ŭ	(i) How many students score between 12 and 15.(ii) How many students score above 18? (iii) How many students score below 18?								[]			
		-				. ,						
	a) The probability of Poisson variate taking the values 1&2 are equal. Find i) Mean ii) $P(X \ge 1)$							[L3][CO5]	[6M]			
7	b) If X is a ne		-		ean 30	and star	ndard	deviat	ion 5			
					$P(X \ge$		liuuiu	aovia	1011 01		[L3][CO5]	[6M]
	Calculate Co				-	-	g data	L				
		10	15				6	24	14 22	2 20	[L3][CO6]	[12M]
8	Y	30	42	45	46 3	33 3	4	40	35 39) 38		[≖≝™⊥]
	Ten competit	ors in a	a musi	cal test	were r	inked b	v the t	hree i	idges A	B and C in the		
	following or		~ 111 4 51	eur tost	,, 010 10		,	ince J				
	Ranks by A	A	1 6	5	10	3	2	4	9	7 8		
9	Ranks by I		3 5		4	7	10	2	1	6 9	[L2][CO6]	[12M]
	Ranks by		6 4	-	8	1	2	3	10			
	Using ra the neare								ch pair of	f judges has		
	Find two reg					-						
10		1	25				37	35	36	45	[L3][CO6]	[12M]
IV	Y	56	64				73	75	82	77		[*#17*]
												<u> </u>

Prepared by: Dept. of Mathematics